The Einstein Polarization Interferometer for Cosmology (EPIC)

Peter Timbie

UW-Madison

for the EPIC collaboration

Brown, Cardiff, Illinois, Ireland-Maynooth, LLNL, Manchester, Richmond, UCSD, Wisconsin, Ball Aerospace, General Dynamics

BEPAC EPIC/Wisconsin

BEPAC EPIC/Wisconsin

CMB Interferometry

phase switch

Lock-in

recorder

detector

- Simple optics
 - forms beams with corrugated horn arrays
 - symmetric beam patterns, low sidelobes, no mirrors
- No off-axis aberrations
- Stokes U measured by correlation of E_x and E_y on a single detector (no differencing of detectors)
- Differences sky signals without scanning
- Measures power spectrum directly
- Measures both Temp and Polarization anisotropy
- Coherent (HEMTs) or incoherent (bolometers) systems possible
- Angular resolution ~ 2X better than imager of equivalent diameter
- CMB polarization first detected with interferometer (DASI)

EPIC Mission Concept

64-element module (1 of 16)

Interference fringes measured in focal plane by bolometer array

EPIC L2 Mission Concept

- Measure CMB *E* and *B* mode polarization over full sky to foreground limit (T/S \sim 0.01)
- Scaled close-packed corrugated horn arrays: 30-300 GHz
- ~15° FOV, ~ 1° synthesized beams
- Total # horns N ~ 1024 (= # modes)
- Interferometer: signals cross-correlated
 - between horns: N(N-1)/2 visibilities for small scales
- between 2 polarizations for each horn: "correlation polarimetry" for large scales
- Delta II 7925H-10
- Lifetime > 1yr from L2
- Scans like WMAP

EPIC L2 Instrument Table

Item	Value/Description
Number and type of instruments	1
Number of channels	16 scaled arrays at
	30(2), 60(2), 90(8), 150(2), 250(2) GHz with 20% BW
Size/dimensions (for each instrument)	2 m x 2 m x 5 m
Payload mass with contingency	690 kg, 25%
Average payload power with contingency	450 W, 25%
Average science data rate with contingency	830 Kpbs, 25%
Instrument Fields of View (if appropriate)	arrays view same 15 ⁰ dia FOV
Pointing requirements	3' knowledge, 6' control

January 30, 2007

EPIC L2 Mission Design Table

Parameter	Value
Orbit parameters	L2 Lissajous (WMAP) 1rpm spin rate, 1/hr precession rate
Mission lifetime	1 year minimum (2 yr goal)
Maximum eclipse period	TBD
Spacecraft dry bus mass	1120 kg (21%)
Spacecraft propellant mass	96 kg (28%)
Launch vehicle	Delta II
Launch vehicle mass margin	TBD
Spacecraft bus power	908 WOAP (30%)

January 30, 2007

EPIC LEO Mission Concept

EPIC LEO Mission Concept

January 30, 2007

EINSTEIN POTANZATION INTERFORMETER for Cosmology (EPIC) Interferometer arrays

Solar panels

January 30, 2007

EPIC LEO Mission Concept

- Measure CMB *E* and *B* mode polarization over full sky to foreground limit (T/S \sim 0.01)
- Scaled close-packed corrugated horn arrays: 30-300 GHz
- ~15° FOV, ~ 1° synthesized beams
- Total # horns N ~ 1024 (= # modes) x 2 pol'ns
- Interferometer: signals cross-correlated
- between horns: N(N-1)/2 visibilities for small scales Arrays
- between 2 polarizations for each horn: "correlation polarimetry" for large scales
- Lifetime > 1yr from 900 km Earth orbit (COBE)

EPIC LEO Instrument Table

Item	Value/Description
Number and type of instruments	1
Number of channels	16 scaled arrays at
	30(2), 60(2), 90(8), 150(2), 250(2) GHz with 20% BW
Size/dimensions (for each instrument)	2.5 m dia x 2.7 m
Payload mass with contingency	1590 kg, 25%
Average payload power with contingency	250 W, 25%
Average science data rate with contingency	830 Kbps, 25%
Instrument Fields of View (if appropriate)	arrays view same 15 ⁰ dia FOV
Pointing requirements	3' knowledge, 6' control

January 30, 2007

EPIC LEO Mission Design Table

Parameter	Value
Orbit parameters	900 km Sun-synchronous (COBE)
	1 rpm spin rate
Mission lifetime	1 year minimum (2 yr goal)
Maximum eclipse period	TBD
Spacecraft dry bus mass with contingency	TBD
Spacecraft propellant mass with contingency	TBD
Launch vehicle	Compatible with Delta II
Launch vehicle mass margin	TBD
Spacecraft bus power and contingency by subsystem	TBD

EPIC sensitivity

- Only 90 GHz channels used in sens. calc.
- Assumes uniform coverage of full sky
- Background-limited detectors, η = 0.5, 20 % BW
- 1 year observation
- Comparable to imager with same # modes
- 2 modes:
 - Inteferometry mode
 - Correlation polarimeter
- T/S = 0.01

End-to-end simulation under development

BEPAC EPIC/Wisconsin

EPIC sensitivity calculation

- Each array module has N = 64 antennas, 2 polarizations
- Signal from each antenna spread out over focal plane of 4N = 256 detectors
- Phase-modulated fringe signal meas'd independently by each detector
- Background-limited detectors in focal plane of beam combiner
- η = 0.5, 20 % BW
- 4N demodulated signals are then added in quadrature to compute visibility
- Repeat for each of the 2N(2N-2)/2 visibilities (all baselines)
- Add in quadrature signals from other arrays at 90 GHz
- 1 year integration over full sky ("Knox" formula)
- Similar procedure for "correlation polarimeter"

EPIC Challenges

- sensitivity analysis
- data analysis
 - analysis pipeline, simulations
 - mosaicking over full sky
- foreground removal Fourier vs map space
- phase shifter

CMB Pre- and Post- WMAP

Hinshaw et al. 2003

January 30, 2007