

Experimental Probe of Inflationary Cosmology (EPIC)

Jamie Bock

JPL / Caltech

JPL

Peter Day **Clive Dickenson Darren Dowell** Mark Dragovan Todd Gaier Krzysztof Gorski Warren Holmes Jeff Jewell Bob Kinsev Charles Lawrence **Rick LeDuc** Erik Leitch Steven Levin Mark Lysek Sara MacLellan **Hien Nguyen** Ron Ross **Celeste Satter** Mike Seiffert Hemali Vyas **Brett Williams**

The EPIC Consortium

Caltech/IPAC

Charles Beichman Sunil Golwala Marc Kamionkowski Andrew Lange Tim Pearson Anthony Readhead Jonas Zmuidzinas

UC Berkeley/LBNL

Adrian Lee Carl Heiles Bill Holzapfel Paul Richards Helmut Spieler <u>Huan Tran</u> Martin White

Cardiff

Walter Gear

Carnegie Mellon Jeff Peterson U Chicago John Carlstrom Clem Pryke

U Colorado Jason Glenn

UC Davis Lloyd Knox

Dartmouth Robert Caldwell

Fermilab Scott Dodelson

IAP Ken Ganga Eric Hivon

IAS

Jean-Loup Puget Nicolas Ponthieu

UC Irvine

Alex Amblard <u>Asantha Cooray</u> Manoj Kaplinghat

U Minnesota Shaul Hanany Tomotake Matsumura Michael Milligan

NIST Kent Irwin

UC San Diego Brian Keating Tom Renbarger

Stanford Sarah Church

Swales Aerospace

TC Technology Terry Cafferty USC Aluizio Prata

Science: Probing the Inflationary Epoch

Primary Objective

Discover what powered the Big Bang... search for gravitational waves from the earliest moments of the Big Bang

NASA 2006 Strategic Plan

A measurement of Inflationary Gravitational-Wave (IGW) B-mode CMB polarization discriminates between models of Inflation

<u>No other way to probe the</u> <u>energy scale of Inflation in the</u> <u>foreseeable future</u>

"We find that, except for (inflation models) with numerous unnecessary degrees of fine-tuning... $r \ge 10^{-2}$."

- Boyle, Steinhardt & Turok 2006, PRL 96, 111301

Weiss committee TFCR, astro-ph/0604101

Secondary Science Themes

M. Kaplinghat et al. 2003, PRL 91, 241301

Measurement Requirements*

Measure the entire B-mode spectrum covering the multipole range ℓ < 200

- low resolution $\Delta \theta \sim 1^{\circ}$
- all sky coverage requires space

Detect minimum r = 0.01 allowed by lensing foreground without cleaning

 sensitivity ~10x better than Planck requires space

Control systematics below science goal

• requires space

Wide band coverage to clean foregrounds

• 30 – 300 GHz range requires space

Simple & Tested Technological Approach

Technology	TRL	Heritage
Focal Plane Arrays (Baseline Mission)		
NTD Ge thermistors and readouts	8	Planck & Herschel
Dual-Polarization Antennas	4	
Wide-Field Refractor	6	BICEP
Waveplate (stepped every 24 hours)		
Optical configuration	6	SCUBA, HERTZ, etc.
Cryogenic stepper drive	9	Spitzer
LHe Cryostat	9	Spitzer, ISO, Herschel
Sub-K Cooler: Single-shot ADR	9	ASTRO-E2 (single-shot)
Deployable Sunshield	4-5	TRL=9 components
Toroidal-Beam Downlink Antenna	4-5	TRL=9 components

Powerful Scan Strategy; Simple Operations

Angular Uniformity in 6 Month Maps

 $<\cos 2\beta >^2 + <\sin 2\beta >^2$

Comparing EPIC to Planck

	EPIC	Planck	How EPIC compares
Scan Strategy	Spin/Precess at L2	Spin at L2	Optimized for polarization
Instruments	Single Instrument 100 mK Bolometers	Two Instruments 20 K HEMTs + 100 mK Bolometers	Much simpler integration Simpler cooler requirements
Cooling chain	Passive + LHe cryostat + ADR	Passive + Hydrogen sorption + 4 K Stirling + Open-cycle dilution	Avoids systems issues Can operate detectors in lab
Instrument hardware at TRL < 6	Antennas, sunshade (2007)	Bolometers, read out electronics, feeds, coolers, polarization analyzers (1998)	Readiness is higher
Data Analysis	Higher sensitivity Systematic error control built in	Higher resolution (maps 100x larger) Fewer detectors	Comparable

Conservative Mission Design

Instrument Architecture

High TRL approach Single detector technology Straightforward cooling chain

Modest Spacecraft

Requirements on structures, pointing, data, etc are not demanding Spacecraft components are all off-the-shelf Simple operations with a single observing mode

Large Mission Resource Reserves

43 % contingency on all mass components + 95 % margin
43 % contingency on all power components + 10 % margin
100 % contingency on data rate
At least 100 % contingency on mission life

Mission Costs

Calculated with JPL's Parametric Mission Cost Model (PMCM) Costs based on a 43 % contingency applied to every subsystem We extended phase C/D to 4 years due to cryogenic instrument Instrument cost agrees with a grass-roots analysis based on Planck & Herschel Estimate agrees with a delta-cost comparison to Spitzer

Backup Materials

Probing Models of Inflation

Boyle, Steinhardt & Turok 2006, PRL 96, 111301

1999 <u>National Academy of Sciences</u> *Gravitational Physics: Exploring the Structure of Space and Time:* "Observations of CMB polarization fluctuations could lead to the detection of a stochastic background of gravitational waves from the early Universe"

2001 Astronomy and Astrophysics in the New Millennium: "Gravitational waves excited during the first instants after the Big Bang should have produced effects that polarized the background radiation. More precise measurements of the properties of this polarization—to be made by the generation of CMB missions beyond Planck—will enable a direct test of the current paradigm of inflationary cosmology, and at the same time they will shed light on the physics of processes that occurred in the early Universe at energies far above those accessible to Earth-bound accelerators."

2003 <u>National Research Council</u> *Connecting Quarks with the Cosmos*, "Measure the polarization of the cosmic microwave background with the goal of detecting the signature of inflation"

2005 <u>NSF, NASA and DOE</u> *Task Force on Cosmic Microwave Background Research*: "Our highest priority... is a program to measure the large-scale CMB polarization signal... to test whether GUT-scale inflation occurred... limited only by astrophysical foregrounds

Modest Spacecraft Requirements

	Parameters	Units	EPIC Requirement	
Structures	Payload Mass	kg	898 (includes 43 % contingency)	
	Spacecraft Dry Mass	kg	713 (includes 43 % contingency)	
	Mass margin	kg	1702 (95 % margin on Atlas V 401)	
	Orbit		Sun-Earth L2 Halo	
	Launch vehicles		Atlas V 401, Delta IV 4040, Delta II	
	Mission Design Life	yrs	> 2	
Power	Payload Power	W	272 (includes 43 % contingency)	
	Spacecraft Power	W	981 (includes 43 % contingency)	
	Solar Panel Area	m ²	7.8	
	Power margin	W	127 (10 % margin)	
C&DH	Data Downlink Rate	kbps	500	
	Data Storage Capability	GB	1	
ACS	Attitude control		3-axis momentum compensated	
	Pointing knowledge	arcsec	30	
	Pointing control	degree	1	
Propuls	Propellant system		Hydrazine	
	Propellant mass	kg	172	
ion	Delta-V budget	m/s	215 (includes contingency)	

Readiness of Key Instrument Technologies

EPIC Technology Readiness (c. 2007)					
Technology	TRL	Heritage			
Focal Plane Arrays					
NTD Ge thermistors and readouts	8	Planck & Herschel			
Antennas	4				
Wide-Field Refractor	6	BICEP			
Waveplate	6	SCUBA, HERTZ, etc.			
Cryogenic stepper drive	9	Spitzer			
LHe Cryostat	9	Spitzer, ISO, Herschel			
Sub-K Cooler: Single-shot ADR	9	ASTRO-E2 (single-shot)			
Deployable Sunshield	4-5	TRL=9 components			
Toroidal-Beam Downlink Antenna	4-5	TRL=9 components			
Planck Technology Readiness (c. 1998)					
Technology	TRL	Heritage to TRL = 6			
NTD thermistors and readouts	5	Boomerang (1999)			
Electronics	5	Archeops (2002)			
Feedhorns & Filters	4-6	Archeops (2002)			
Cooling Chain					
20 K Hydrogen Sorption	4-8	Planck CQM (2005)			
4 K Stirling	9				
100 mK Open-Cycle Dilution	5	Archeops (2002)			
Test of Integrated System	-	Planck CQM (2005)			
Polarization Sensitive Bolometers (PSBs)	-	B2K (2003)			

Ground-Based & EPIC Complement Each Other

Combined Themes

- Dark Energy Equation of State
- Neutrino Masses
- Lensing Removal

Weiss committee TFCR, astro-ph/0604101

Value of Measuring Entire IGW Spectrum

Can test this to < 25 % if r > 0.04

Comparing CMB and Direct Detection

Weiss committee TFCR, astro-ph/0604101 T.L. Smith et al. 2006, Phys. Rev. D73, 123503