UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

HSIA-PO VINCENT KUO

And have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made.

PATRICIA HELLER
Advisor
Signature
Date

GRADUATE SCHOOL

AN EXPLANATORY MODEL OF PHYSICS FACULTY CONCEPTIONS ABOUT THE PROBLEM-SOLVING PROCESS

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA

BY

HSIA-PO VINCENT KUO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS $\mbox{FOR THE DEGREE OF}$ $\mbox{DOCTOR OF PHILOSOPHY}$

PATRICIA HELLER, ADVISOR

August, 2004

© HSIA-PO VINCENT KUO, 2004

DEDICATION

To my parents, Chin-Yi and Yueh-Hsi, for their unwavering love and support throughout this long journey.

To my brother and sister, Andy and Kaitlyn, for putting up with my sometimes eccentric personality during this process.

ACKNOWLEDGEMENTS

I would like to thank the many people whose time, effort, and support were greatly appreciated in the completion of this dissertation.

I thank my advisor, Dr. Patricia Heller, for her guidance and support during this project. She has taught me the meaning of conducting quality research.

I thank Dr. Kenneth Heller for his continual discussion, advice, and encouragement. He has taught me to think analytically about issues, as well as how to give a good presentation.

I thank Dr. Charles Henderson and Dr. Edit Yerushalmi for their insights during the first stage of this research program. I have learned much from working with them, and through our conversations about analysis techniques and qualifying interpretations.

I thank my various committee members, Dr. Charles Campbell, Dr. E. Dan Dahlberg, Dr. Fred Finley, and Dr. Frances Lawrenz, for many helpful conversations throughout this project.

I thank Dr. Thomas Thaden-Koch and Paul Knutson for their help. Conversations with them throughout this dissertation had made me clarify my own thoughts and made my writing more coherent.

Finally, I thank the 30 instructors who agreed to be interviewed as part of this research program, and for their willingness to talk about their views of problem solving.

ABSTRACT

One commonly stated instructor goal for an introductory calculus-based physics course is to improve students' problem solving skills. There is, however, a growing body of research evidence to suggest that this goal is not frequently accomplished in a typical college or university physics course. In response to this evidence, researchers and curriculum developers have developed a wide variety of curricular materials and instructional strategies that have been shown to be more effective in improving student problem solving performance. In spite of the availability of these curricular materials and instructional strategies, relatively few physics instructors have chosen to use them. One likely reason is that these curricular materials and instructional strategies do not align with, and perhaps are in conflict with, the ways that physics instructors think about the teaching and learning of problem solving. This has led the Physics Education Research and Development Group at the University of Minnesota to undertake a long-term, multistage research program to understand physics instructors' conceptions about the teaching and learning of problem solving.

In the first stage, semi-structured interviews with higher education physics instructors in Minnesota were conducted. The interview was designed around three types of concrete instructional artifacts (3 instructor solutions, 5 student solutions, 4 types of problems) that were all based on a single introductory physics problem. The interview included specific questions relating to a particular instructional artifact as well as more general questions. Based on an in-depth analysis of interview transcripts, concept maps were constructed to describe a model of the way that each instructor conceives of the teaching and learning of problem solving. These individual models were combined to form a composite model that describes the range and nature of conceptions for the instructors. The first stage analyzed the interview transcripts of six physics instructors from a research university, and an initial explanatory model was developed. Part of this initial model identified 3 different ways that these instructors conceive of the problem-solving process. Around the same time, interviews were also conducted with 24

additional instructors from community colleges, state universities, and private colleges in Minnesota.

The current study is the second stage of that research program. The goal of this current study is to modify, expand, and refine the part of the initial explanatory model dealing with instructor conceptions about the problem-solving process using interviews with the 24 additional physics instructors. The qualitative analysis procedure of this current study will be a variation of the Grounded Model Construction and Explicit Analysis methods suggested by Clement (2000). The first phases of this analysis will utilize the interviews with the 24 additional instructors. In the first phase, the initial explanatory model will be modified and expanded by adding and/or modifying the different conceptions about the problem-solving process. The second phase of this analysis will be the refinement of the details and descriptions of the modified and expanded conceptions. Concept maps were used both as an analysis tool and to schematically represent instructors' conceptions.

The refined explanatory model of instructor conceptions about the problem-solving process developed in this current study consisted of two qualitatively different conceptions. A third conception of the problem-solving process was also identified in this sample, but it was idiosyncratic, and did not consist of any descriptions of a process. As such, it did not provide very much information for further analysis and comparison. Of the two conceptions that included descriptions of a process, not one instructor expressed both conceptions. Although the instructors in these two conceptions used similar wording in describing various parts of the problem-solving process, they differed in the underlying nature of what problem solving entails. One group of instructors conceived of the problem-solving process in introductory calculus-based physics as linear decision-making. Another group of instructors conceived of the problem-solving process as cyclical decision-making. Furthermore, the instructors in these two conceptions of the problem-solving process also differed in their views of the thinking processes that underlie successful problem solving.

TABLE OF CONTENT

(CHAPTER 1: Introduction	1
	Background	3
	Problem Solving	3
	Differences between Expert and Novice Problem Solvers	3
	Summary of the Initial Explanatory Model	4
	Model Generation and Testing.	8
	Research Questions	10
	Methodology	10
	Designing the Interview	10
	Sample	11
	Data Collection Procedure	12
	Data Analysis	12
	Addressing Sub-Question 1	13
	Addressing Sub-Question 2	14
	Addressing Sub-Question 3	15
	Implications	16
	Theoretical Implications	16
	Practical Implications.	16
	Limitations	18
	The Research Team.	18
	Important Terminology	19
	Overview of This Dissertation	21

CHAPTER 2: Literature Review	22
Research on Teaching	22
Teachers' Cognitions	23
Teachers' Decision-Making	23
Preactive Thinking	24
Interactive Thinking	25
Summary of Research on Teaching	27
Research on Teacher's Conceptions	28
General Conceptions	31
Conceptions of Teaching and Learning	31
Conceptions of Subject Matter	34
Conceptions of the Teaching Context	36
The Teaching Cycle	37
Teachers' Context-Specific Conceptions	38
Expertise In Teaching	40
Reflection	42
Summary of Research on Teachers' Conceptions	43
Research on Problem Solving	44
Problem Solving	44
Metacognition	46
Differences Between Expert and Novice Problem Solvers	49
Differences in Knowledge	49
Differences in Approaches to Problem Solving	50

Strategies Designed to Improve Student Problem Solving	51
Problem-Solving Framework	51
"Real" Problems	54
Concept Maps	55
Guided Practice	56
Summary of Strategies Developed to Improve Student Problem Solving	56
CHAPTER 3: Methods	58
Goals of the Study	58
Overview of the Initial Explanatory Model of the Problem-Solving Process	59
Overview of Methodology	62
Phenomenography	62
Phenomenography versus Phenomenology	62
Convergent Studies	63
Development of the Interview Tool	64
Artifact Set I: Instructor Solutions	65
Artifact Set II: Student Solutions	65
Artifact Set III: Problem Types	66
Interview Protocol	66
Data Collection	67
Scheduling and Conducting the Interviews	67
Sample	68
Data Analysis	71
Transcription of the Interviews	71

Analysis of the Interview Data for the Exploratory Study	71
Selection of Parts of the Interview to Analyze	75
Units of Analysis	76
Breaking the Transcripts into Statements	77
Individual Concept Maps	81
Refining the Explanatory Model of the Problem-Solving Process	86
Generation of the Composite Map	86
Post Hoc Analysis: Metacognitive Processes	93
Viability of the Explanatory Model	98
Internal Consistency	98
External Consistency	101
Summary	103
CHAPTER 4: Results and Conclusions	105
Concept Map Symbols	105
Refining the Explanatory Model of the Problem-Solving Process	108
Sub-Question 1: Qualitatively Different Conceptions of the Problem-Solving	
Overview of the Qualitatively Different Conceptions in the Initial Exp	_
Qualitatively Different Conceptions in the Refined Explanatory Model	110
Refined Explanatory Model: Answers to Sub-Question 1	115
Summary of Conception 1	115
Summary of Conception 2	115
Summary of Conception 3	116

Sub-Question 2: Details in the Refined Explanatory Model	117
Details of the Major Components in the Linear Conception	118
Metacognition in the Linear Conception	121
Details of the Major Components in the Cyclical Conception	124
Metacognition in the Cyclical Conception	126
Metacognition in the Problem-Solving Process.	129
Different Types of Metacognition	129
Comparison of Metacognition between the Linear and Cyclical Conceptions	132
Percentage of statements	132
Different Phrasings of Metacognition	135
Refined Explanatory Model: Answers to Sub-Question 2	142
Summary of the Details in the Refined Explanatory Model	142
Summary of the Role of Metacognition	143
Sub-Question 3: Viability of the Explanatory Model	145
Internal Consistency.	145
External Consistency	148
External Consistency Check 1	148
External Consistency Check 2	149
External Consistency Check 3	149
Refined Explanatory Model: Answers to Sub-Question 3	152
Summary	153
CHAPTER 5: Implications	155
Summary of the study	155

Limitations	156
Theoretical Implications	157
Methodological Implications	158
Relation to Prior Research	159
Practical Implications	161
Future Studies	165
REFERENCES	167
APPENDICES	182
Appendix A: Interview Artifacts	183
Set I: 3 Instructor Solutions	184
Set II: 5 Student Solutions	188
Set III: 4 Problem Types	194
Appendix B: Interview Protocol	199
Appendix C: Packet Mailed to Interviewee Prior to Interview	207
Cover Letter	208
Homework Problem	210
Background Questionnaire	212
Appendix D: Consent Form	217

LIST OF FIGURES

Figure 1-1: Initial Explanatory Model – Solve Physics Problems. The dashed box outlines the concepts that three instructors used to describe the details of the linear decision-making process
Figure 1-2: Cyclical process of generation and modification in the development of explanatory models (adopted from Clement, 2000, p. 554)8
Figure 2-1: Model of teachers' interactive decision-making during interactive teaching .26
Figure 2-2: Framework for understanding research on teaching
Figure 2-3: Taken from Fernandez et. al. (1973), this problem-solving framework emphasizes the dynamic and cyclical nature of the problem-solving activity. The framework starts at the upper left-hand corner, and proceeds clockwise. The dashed lines represent the "backtracking" between each step, and the oval in the middle represents the necessary regulatory metacognitive processes that are embedded throughout the whole problem-solving process
Figure 3-1: Initial Explanatory Model - Solving Physics Problems (6 instructors)61
Figure 3-2: Problem upon which interview artifacts were based (Homework Problem)64
Figure 3-3: A piece of the interview transcript from interview situation I, question #373
Figure 3-4: Example of how concept mapping was used differently in this study as compared to it traditional form. The map on the left represents the application of concept mapping used in this study. Each box contains a whole statement, or conception. The map on the right represents what the same information would look like when applied in the traditional form. Each box usually contains only a single word to indicate a concept. The different shape boxes on the right represent active and passive concepts.
Figure 3-5: Procedure for Developing an Individual Concept Map
Figure 3-6: Individual concept map of the problem-solving process for Instructor 385
Figure 3-7: Individual concept map of the Problem-Solving Process for Instructor 1689
Figure 3-8: Individual concept map of the Problem-Solving Process for Instructor 1790
Figure 3-9: Individual concept map of the Problem-Solving Process for Instructor 2791
Figure 3-10: One branch of the Composite Map of the Problem-Solving Process92
Figure 3-11: Procedure for analysis of metacognition
Figure 4-1: Concept Map Symbols
Figure 4-2: Refined Explanatory Model – Problem-Solving Process (30 Instructors)114
Figure 4-3: More detailed concept map for the Linear Decision-Making Process conception

Figure 4-4: Linear Decision-Making Process concept map with Metacognition	123
Figure 4-5: More detailed concept map for the Cyclical Decision-Making Process conception	125
Figure 4-6: Cyclical Decision-Making Process concept map with Metacognition	

LIST OF TABLES

Table 1-1: Summary of the qualitatively different conceptions of the problem-solving process in the Initial Explanatory Model
Table 3-1: Demographic information for 30 interview participants from various higher educational institutions in the state of Minnesota
Table 3-2: Statements made from a portion of the interview transcript with Instructor number 3
Table 3-3: Coding of metacognition with statements made from a portion of the interview transcript with Instructor 3
Table 3-4: Metacognitive phrasing for Instructor 3. Italic statement was idiosyncratic to this instructor
Table 3-5: Ranking scale for individual concept maps. Ranking consists of criteria based on quantity and quality of details about "Requirements", "Reasons", "Secondary Clarifications", and "Interconnections"
Table 4-1: Summary of the qualitatively different conceptions of the problem-solving process
Table 4-2: Comparisons of the qualitatively different conceptions of the problem-solving process
Table 4-3: Summary of number and type of statements made by each of the 30 physics instructors
Table 4-4: Percentage of each type of statement with respect to the total number of problem solving statements for each instructor that expressed the Linear conception $(N = 22)$
Table 4-5: Percentage of each type of statement with respect to the total number of problem solving statements for each instructor that expressed the Cyclical conception $(N = 7)$
Table 4-6: Metacognitive phrasings about <i>planning</i> and the percentages of instructors who expressed each respective phrasing within each qualitatively different conception of the problem-solving process. The dark lines separate metacognitive phrasings that are related to similar components of the problem-solving process140
Table 4-7: Metacognitive phrasings about <i>monitoring</i> and the percentages of instructors who expressed each respective phrasing within each qualitatively different conception of the problem-solving process. The dark lines separate metacognitive phrasings that are related to similar components of the problem-solving process141
Table 4-8: Metacognitive phrasings about <i>monitoring</i> and the percentages of instructors who expressed each respective phrasing within each qualitatively different conception of the problem-solving process

LIST OF CHARTS

Chart 3-1: Count of statements relevant to the Problem-Solving Process sorted by Interview Question number for all six research university instructors
Chart 4-1: Comparison of the percentages for the three different types of metacognition between the Linear and Cyclical conceptions
Chart 4-2: Ranking of the concept maps in the Linear and Cyclical conceptions. The numbers represent the percentage of the concept maps within each conception that was ranked along the respective scale
Chart 4-3: Rating of importance for the goal of Quantitative Problem Solving. The numbers represent the percentage of the instructors within each conception that rated along the respective scale
Chart 4-4: Rating of importance for the goal of Qualitative Problem Solving. The numbers represent the percentage of the instructors within each conception that rated along the respective scale
Chart 4-5: Liking for example Instructor Solutions. The numbers represent the percentage of the instructors within each conception that expressed their liking for a particular Instructor Solution