TABLE OF CONTENTS

Introduction	INTRO - 1
Laboratory I: Electric Fields and Forces	I - 1
Simulation Problem #1: Electric Field Vectors	I - 3
Problem #2: Electric Field from a Dipole	I - 6
Problem #3: Gravitational Force on the Electron	I - 9
Problem #4: Deflection of an Electron Beam by an Electric Field	I - 12
Problem #5: Deflection of an Electron Beam and Velocity	I - 15
Check Your Understanding	I - 18
Laboratory I Cover Sheet	I - 19
Laboratory II: Electric Fields and Electric Potentials	П - 1
Simulation Problem #1: The Electric Field from Multiple Point Charges	II - 3
Simulation Problem #2: The Electric Field from a Line of Charge	II - 7
Simulation Problem #3: Electric Potential from Multiple Point Charges	II - 10
Simulation Problem #4: Electric Potential from a Line of Charge	II - 13
Check Your Understanding	II - 17
Laboratory II Cover Sheet	II - 19
Laboratory III: Electric Energy and Capacitors	Ш - 1
Problem #1: Electrical and Mechanical Energy	III - 2
Exploratory Problem #2: Simple Circuits with Capacitors	III - 5
Exploratory Problem #3: Capacitance	III - 7
Problem #4: Circuits with Two Capacitors	III - 9
Check Your Understanding	III - 12
Laboratory III Cover Sheet	III - 13
Laboratory IV: Electric Circuits	IV - 1
Exploratory Problem #1: Simple circuits	IV - 3
Exploratory Problem #2: More Complex Circuits	IV - 5
Exploratory Problem #3: Short Circuits	IV - 7
Problem #4: Charging a Capacitor (Part A)	IV - 9
Problem #5: Circuits with Two Capacitors	IV - 12
Problem #6: Charging a Capacitor (Part B)	IV - 15
Problem #7: Charging a Capacitor (Part C)	IV - 18
Problem #8: Resistors and Light Bulbs	IV - 20
Problem #9: Quantitative Circuit Analysis (Part A)	IV - 22
Problem #10: Quantitative Circuit Analysis (Part B)	IV - 24
Problem #11: Qualitative Circuit Analysis	IV - 26
Check Your Understanding	IV - 29
Laboratory IV Cover Sheet	IV - 31

Laboratory V: Magnetic Fields and Forces	V - 1
Problem #1: Permanent Magnets	V - 2
Problem #2: Current Carrying Wire	V - 5
Problem #3: Measuring the Magnetic Field of Permanent Magnets	V - 8
Problem #4: Measuring the Magnetic Field of One Coil	V - 11
Problem #5: Determining the Magnetic Field of a Coil	V - 14
Problem #6: Measuring the Magnetic Field of Two Parallel Coils	V - 17
Problem #7: Magnets and Moving Charge	V - 20
Problem #8: Magnetic Force on a Moving Charge	V - 22
Check Your Understanding	V - 25
Laboratory V Cover Sheet	V - 27
Laboratory VI: Electricity from Magnetism	VI - 1
Exploratory Problem #1: Magnetic Induction	VI - 2
Problem #2: Magnetic Flux	VI - 4
Problem #3: The Sign of the Induced Potential Difference	VI - 7
Problem #4: The Magnitude of the Induced Potential Difference	VI - 9
Problem #5: The Generator	VI - 12
Problem #6: Time-Varying Magnetic Fields	VI - 15
Check Your Understanding	VI - 18
Laboratory VI Cover Sheet	VI - 19
Appendix A: Significant Figures	A - 1
Appendix B: Accuracy, Precision, and Uncertainty	B - 1
Appendix C: Graphing	C - 1
Appendix D: Equipment	D - 1
Appendix E: Software	E - 1
Appendix F: A Brief Introduction to Root Mean Square Measurements	F - 1
Appendix G: Sample Laboratory Report	G - 1

Acknowledgments

Much of the work to develop this problem solving laboratory was supported by the University of Minnesota and the National Science Foundation. We would like to thank all the people who have contributed directly to the development of this laboratory manual:

Yves Adjallah Andy Ferstl Kimia Ghanbeigi Alexey Kobrinskii Laura McCullough Leon Steed

Heather Brown Tom Foster Charles Henderson Andrew Kunz Michael Myhrom Alexander Scott Jennifer Docktor Matthew Fritts Ted Hodapp Vince Kuo Jeremy Paschke Tom Thaden-Koch

And all of the faculty and graduate students who helped to find the 'bugs' in these instructions.

Kenneth & Patricia Heller

© Kenneth Heller & Patricia Heller