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Solving Problems With Methods Questions 
INDIVIDUAL TASK: 
 

Solve your assigned problem (one of the two problems shown below). 
 
Please include detailed diagram(s), define all variables, and show all steps in your solution.  
You can pick up and use a series of Methods Questions for the problem.  These questions are a 
guide or framework for a logical, organized approach for solving the problem. 

 
 
TIME:  20 minutes 
 
PRODUCT: 

Your problem solution.  Your solution will not be graded for a correct answer.  Instead, the 
solution will be graded for organization and logical progression. 

 
QUANTUM MECHANICS PROBLEM.  You are investigating the properties of very thin 
materials to study the behavior of quantum systems as their dimensionality goes from three to 
two.  Your system is a surface held at liquid helium temperatures with dislocations in which 
electrons can be trapped.  To predict the equipment needed to detect these trapped electrons, you 
first decide to calculate the first three energy levels assuming that the potential energy can be 
approximated as a two dimensional harmonic oscillator with a very small first order coupling 
between the two orthogonal dimensions.  You decide to take the effect of that coupling as a 
perturbation to the pure harmonic oscillator potential energy.  That perturbation is proportional to 
product of the distance of the electron from its equilibrium position in each dimension.  You will 
work in units in which the mass of the electron is 1 and .1=h  
 
 
Useful Mathematical Relationships: 
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Fundamental Concepts and Principles: 
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MOMENT OF INERTIA PROBLEM.  While examining the engine of your friend’s snow 
blower, you notice that the starter cord wraps around a cylindrical ring of metal.  This ring is 
fastened to the top of a heavy, solid disk, "a flywheel", and that disk is attached to a shaft.  You 
are intrigued by this configuration and wonder how to determine its moment of inertia.  Your 
friend thinks that you just add up all of the individual moments of inertia of the parts to get the 
moment of inertia of the system.  To test this idea you decide to build a laboratory model 
described below to determine the moment of inertia of a similar system from its motion.  You 
think you can do it by just measuring the acceleration of the hanging weight, as shown in the 
diagram below. 
 

 

A disk that is mounted on a sturdy 
stand by a metal shaft.  Below the disk 
on the shaft is a metal spool to wind 
string around.  A metal ring sits on the 
disk so both ring and disk share the 
same rotational axis.  A length of 
string is wrapped around the spool and 
then passes over a pulley lined up with 
the edge of the spool.  A weight is 
hung from the other end of the string 
so that the weight can fall past the 
edge of the table. 

 
Calculate that the moment of inertia of the ring/disk/shaft/spool system as a function of the 
acceleration of the hanging weight and the radius of the spool. 
 
 
Useful Mathematical Relationships: 
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Fundamental Concepts and Principles: 
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Under Certain Conditions: 
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Icm=fIring: f (hollow sphere)=2/3; f (disk)=1/2; f(solid sphere)=2/5; f (solid rod, perpendicular to 
length)=1/3 

 
 
 
Useful constants: 1 mile = 5280 ft, 1km = 5/8 mile, g = 9.8 m/s2 = 32 ft/s2, RE = 4x103 miles, 
G = 6.7x10-11 Nm2/kg2 
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