Facilitating an End Discussion (complete student solutions)

INDIVIDUAL TASKS:

**If you have already done the individual task from Activity #6, refer to your preparation notes from that activity.

On the following page is an introductory physics problem – pretend that your teaching team has decided to use this problem in the next discussion session.

- 1. Solve this problem by yourself.
- 2. Write down some notes about how you would prepare for this discussion session. Use the Discussion Preparation sheet as a guide.
 - a. What is the learning focus for this problem that you will emphasize?
 - b. What do you expect students to have difficulty with?
 - c. What questions can you ask students?
- 3. Write up a detailed "solution" to this problem that you would hand out to your students at the end of class

INDIVIDUAL & GROUP TASKS:

Following the problem statement are 8 <u>complete</u> student solutions to the problem. Notice that these are the same student solutions from Activity #6, but they are now longer. For this activity, you should pretend that you are approaching the end of teaching a discussion session with this problem. As you circulate the room one last time, you observe what students have written on their papers.

Choose 4 of the following 8 solutions to represent what your student groups have come to a consensus about for the problems. Ignore the other 4 solutions.

- 1. Based on the 4 completed solutions you have chosen, what will you ask student groups to put on the board for an end discussion?
- 2. After they put this on the board, what questions will you ask during the end-of-class discussion with all groups?

Be prepared to share your responses to these questions with your peers during TA Orientation.

NOTE: These partial student solutions were actually taken from individual solutions to a 1201 final exam problem in Fall 2005, from two different lecture sections. The problem was chosen because it is similar to most group problems given in discussion sessions.

Problem:

Your task is to design an artificial joint to replace arthritic elbow joints in patients. After healing, the patient should be able to hold at least a gallon of milk (3.76 liters) while the lower arm is horizontal. The bicep muscle is attached to the bone at the distance 1/6 of the bone length from the elbow joint, and makes an angle of 80° with the horizontal bone. For how strong of a force should you design the artificial joint? (The weight of the bone is negligible.)

STUDENT #1:

STUDENT #2:

WEIGHT OF BONE NEGLIBURG. FM=FORCE OF MUSCLE
APPROACH: On How STRONG A PORCE SHOULD THE ARTIFICLE VOINT BE MATION THE ARTIFICLE USE FORCES NEGLECT BONG MASS. Silcoso-Max = 0 S=Fmysund=24y-0 T=rFl SIT=Fooso-m=0
From Fm Fm=mx-Lx Mx Lxcosb - mx Lx Mx=Lxcosb
Lxcost - Fmy sunt - Fcoste Lxcost - Fcoste = Fm, sunt $F_m = \frac{L_x \cos \theta - Fcoste}{\sin \theta}$

STUDENT #3:

STUDENT #4:

STUDENT #5:

The objective of the problem is to determine the force of the erbour jurit so that it can support 3.742 while large arm is in horizontal.

T= F-dsin0

3.76 Liter (10° m/ V 10° kg) = 3.76 kg

Turt = 0

Tmack - Fm. otsin10

Fellow = mg

Fellow = 3.76kg . 9.8 = 37N.

The elbow show be able to withstand 37N

That sums reasonable, 37N28 lbs.

Unit Analysis

STUDENT #6:

STUDENT #7:

STUDENT #8:

