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Problem Solving Measure
Problem solving is both an important mechanism 
and outcome of learning.

This is certainly true in physics
Unfortunately, there is no standard way to easily measure 
problem solving so that student progress can be 
assessed.

Our goal is to develop an easy-to-use, robust instrument 
to assess students’ written solutions to physics 
problems, and obtain evidence for reliability, validity, and 
utility of scores.

The instrument should be general
not specific to instructor practices or techniques
applicable to a range of problem topics and types
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Reliability, Validity, & Utility
Reliability – score agreement
Validity evidence from multiple sources

Content (relevant & representative)
Response processes
Internal & external structure
Generalizability
Consequences of testing

Utility - usefulness of scores

AERA, APA, NCME (1999). Standards for educational and psychological testing. Washington, 
DC: American Educational Research Association.

Messick, S. (1995). Validity of psychological assessment. American Psychologist, 50(9), 741-749.

Assessment 
construction 

must 
address 

these 
concepts



4/18/2009 Jennifer Docktor, University of Minnesota 4

Instrument at a Glance (Rubric)

5 NA 
(Slvr)

NA 
(Prob)

01234

Physics Approach

Specific Application

Math Procedures

Logical Progression

Useful Description

SCORE

Separate score for each category – indicates strengths & weaknesses
Minimize the number of categories & scores 

CATEGORY:
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Research Basis for Rubric
Representative research literature

Categories come from:
Problem solving processes

Pólya (1945), Newell & Simon (1972), Reif & J. Heller (1982, 1984), 
Schoenfeld (1985), Van Heuvelen (1991)

Expert-novice characteristics
Chi, Feltovich, & Glaser (1981), Larkin (1979), Larkin, McDermott, Simon, & 
Simon (1980), Hardiman, Dufresne, & Mestre (1989), Singh (2002, 2008)

Previous work at Minnesota
P. Heller, Keith, & Anderson (1992), Blue (1997), Foster (2000)

Instrument construction:
Validity, Reliability, Utility

AERA, APA, NCME (1999), Kane (1992), Messick (1995), Moss (2007), 
Cohen (1968)

Rubrics
Arter & McTighe (2001), Montgomery (2002)
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Rubric Scores (in general)

All 
inappro-

priate

1
Most 

missing 
and/or 
contain 
errors

2

No 
evidence 

of 
category

Parts 
missing 
and/or 
contain 
errors

Minor 
omission
or errors

Complete 
& appro-

priate

0345

Not necessary for this solver 
(i.e. able to solve without 

explicit statement)

Not necessary for this 
problem 

(i.e. visualization or physics 
principles given)

NA - SolverNA - Problem
NOT APPLICABLE (NA):



4/18/2009 Jennifer Docktor, University of Minnesota 7

Overview of Study
1. Drafting the rubric
2. Preliminary tests with two raters (final 

exams and instructor solutions)
3. Training exercise with graduate 

students
4. Analysis of tests from an introductory 

mechanics course
5. Student problem-solving interviews (in 

progress)
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Initial Training Exercise
Results - preliminary rubric use 
8 physics graduate students with TA experience

Score agreement improved significantly with minimal training 
Weighted kappa 0.27±0.03  Fair 0.42±0.03  Moderate
Math & Logical Progression most affected

Raters influenced by traditional grading experience
Unwilling to score math and logic if physics incorrect

Multi-part problems more difficult to score 
Revisions to rubric and training based on this

Consistent language across rubric categories
More examples of NA scores & expand zero score
Distinguish physics approach & application
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Analysis of Tests
Calculus-based introductory physics course for Science & 
Engineering students (mechanics)

Test problems graded in the usual way by teaching 
assistants, then scored with rubric by researcher

EXAMPLE  DATA

Instructor Solutions

Student Solutions
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Findings from Test Analysis
The rubric indicates areas of student 
difficulty for a given problem

Focus instruction to coach physics, math, 
clear and logical reasoning processes, etc.

The rubric responds to different problem 
features

Can make score interpretation difficult
usefulness of visualization
prompts & cues
numeric vs. symbolic question

Modify problems to elicit / practice processes
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Summary
A rubric is being developed from descriptions of 
problem solving process, expert-novice research 
studies, and past studies at UMN

Focus on written solutions to physics problems

Training revised to improve score agreement

Rubric provides useful information that can be used for 
research & instruction

Rubric works for standard range of physics topics in an 
introductory mechanics course

There are some problem characteristics that make score 
interpretation difficult (prompts & cues)

Interviews will provide information about response 
processes
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99.9% confidence limit: 3.291

99% confidence limit: 2.576

95% confidence limit: 1.960

N: number of subjects rated

fe: expected frequencies of exact 
agreement by chance

fo: observed frequencies of exact 
agreement (diagonal of pivot 
table)
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Kappa

N: number of subjects rated

fe: expected frequencies of exact 
agreement by chance

fo: observed frequencies of exact 
agreement (diagonal of pivot table)

∑
∑ ∑

−
−

=
E

Eo

fN
ff

κ

( )
( )2

2

∑
∑ ∑

−

−
=

E

oo

fNN

ffN
κσ

22
21

21 κκ σσ
κκ
−

−
=z

99.9% confidence limit: 3.291

99% confidence limit: 2.576

95% confidence limit: 1.960


