What Does it Mean to Solve a Physics Problem? – Instructors' Beliefs *

Charles Henderson Western Michigan University

Ken Heller, Patricia Heller, Vince H. Kuo University of Minnesota

Edit Yerushalmi

Weizmann Institute

http://homepages.wmich.edu/~chenders/

*Supported in part by NSF grant #DUE-9972470

1

Overview

- 1. Why study faculty conceptions?
- 2. Overview of larger study.
- 3. What conceptions do six research university faculty have about the process of solving physics problems (in the context of introductory physics).

Why are Faculty Conceptions Important?

Want to Improve

*e.g. Prosser & Trigwell (1999), <u>Understanding Learning and Teaching</u>

3

Why are Faculty Conceptions Important?

- 1. Selection of teaching approach
- 2. Selection of teaching materials
- 3. Evaluation of teaching

*e.g. Prosser & Trigwell (1999), <u>Understanding Learning and Teaching</u>

4

Why are Faculty Conceptions Important?

Faculty Conceptions

1.Subject (i.e., knowledge and beliefs about the subject they are teaching)

2.Teaching and

Learning (e.g., pedagogical knowledge, orientation towards teaching)

3.Context (e.g.,

perceptions of student capabilities, perceptions of administrative constraints)

- 1. Selection of teaching approach
- 2. Selection of teaching materials
- 3. Evaluation of teaching

*e.g. Prosser & Trigwell (1999), <u>Understanding Learning and Teaching</u>

(3)

Focus of This Talk

Faculty Conceptions

1.Subject (i.e., knowledge and beliefs about the subject they are teaching)

2.Teaching and

Learning (e.g., pedagogical knowledge, orientation towards teaching)

3.Context (e.g.,

perceptions of student capabilities, perceptions of administrative constraints) Faculty knowledge and beliefs about the problem solving process

•How they model/explain problem solving to students

•How they expect students to solve problems

•How they expect students to learn how to solve problems

•Their attitudes towards curricular materials

Who Needs to Understand Faculty Conceptions?

- **Curriculum Developers Need to Understand Faculty Conceptions:**
- Instructional materials and/or strategies may not align with faculty conceptions:
 - Non Use by faculty
 - Inappropriate Use by Faculty

- Professional Development Providers Need to Understand Faculty Conceptions:
- Identify faculty strengths (build on p-prims)
- Identify "gaps" in faculty conceptions (help bridge gap)
- Identify conflicting conceptions (promote disequilibrium)

Goal of this Study

- Begin the process of building a model of faculty conceptions (beliefs and values) about the teaching and learning of problem solving in introductory calculus-based physics based on interviews with physics instructors.
 - Can (how can) faculty conceptions be measured?
 - Can (how can) a model be constructed to describe these conceptions?
 - What are the major features of this model?
 - How are these features related?

The focus of this study is on problem solving because the Physics Education Research Group at UMN is interested in problem solving.

The Problem Solving Process

six research university instructors

Conception 1: A linear decisionmaking process (backtracking is not necessary) (3 of 6)

Step 1: "Know" physics principle(s) to use

Step 2: Clarify thinking (e.g. by using diagrams)

Step 3: Use tools (e.g., algebra, FBD) to get answer

Step 4: Evaluate answer

Conception 2: A process of exploration and trial and error process (2 of 6) Conception 3: A creative process that is different for each problem (1 of 6)

Step 1: Decide on goal (e.g., target to known)

Step 2: "Explore" the problem and "decide" on possibly useful approaches or principles

Step 3: Try most promising approach

Step 4: Evaluate progress (return to step 2 if necessary) (3)WESTERN MICHIGAN UNIVERSITY

The Problem Solving Process

the Cognitive Psychology perspective*

- is happening
- Identify Options (e.g., principles or definitions)
- Draw diagrams
- Identify goal

 Sequentially choose sub problems that reduce the gap between goal and known information

Implement

For experts, choices limited by:

- knowledge structure 1)
- experience 2)

- Goal attained?
- Well specified?
- Self consistent? (units, signs)
- Consistent with other information? (e.g., special cases)
- Optimal? (as clear and simple as possible)

WESTERN MICHIGAN UNIVERSITY

The Problem Solving Process Conception 1: A linear decision-making (3 instructors)

problem

? - How are the correct
physics principles selected?

S WESTERN MICHIGAN UNIVERSITY

The Problem Solving Process

Conception 3: A creative process that is different for each problem (1 instructor)

Conclusions

There are similarities between the Cognitive Psychology view of the PS process and the five instructors who identified a process:

- Main "units" of the problem solving process are similar.
 - Qualitative analysis/clarification phase
 - Decision about approach/principles
 - Implementation
 - Evaluation
- Although the ordering and some details were different.

Conclusions

There are differences between the Cognitive Psychology view of the PS process and the five instructors who identified a process:

• Main difference is the identification of choices in decision making

No choices – predetermined (algorithm)		Instructors not familiar with expert/novice PS research		Infinite choices (random)	
	Linear Decision Making (3 instructors)		Strategic Decision Making	Trial & Error (2 instructors)	
	Experience is everything		 Knowledge Structure Strategy 	Monitoring progress is everything]

(3)

Implications for Curriculum Developers

No choices –	Infinite
predetermined	choices
(algorithm)	(random)

Strategic

Decision

Making

Linear Decision Making (3 instructors)

Teaching Activity

Curricular Material

Instruction likely to emphasize error-free and mechanical performance Lots of "Drill & kill" single concept problems

Instruction likely to emphasize knowledge organization and PS strategy

PS Strategy, Framework for organizing and using physics knowledge Instruction likely to treat making choices as "magic"

Trial &

Error (2

instructors)

Strategy for evaluating progress

Implications for Professional Development Providers

- 1. There are things to build on: basic building blocks of problem solving process are there.
- 2. There are opposite views.
 - Good situation for professional development.

The End

For more information, visit my web site at:

http://homepages.wmich.edu/~chenders/

Or send Email to:

Charles.Henderson@wmich.edu