Faculty Conceptions About the Teaching and Learning of Problem Solving*

Charles Henderson

Ken Heller, Patricia Heller, Vince Kuo, Edit Yerushalmi **University of Minnesota** http://www.physics.umn.edu/groups/physed/

*Supported in part by NSF grant #DUE-9972470

UMN

Physics Education Research Group

Faculty Kenneth Heller

Post Doc Patricia Heller Idit Yerushalmi

Graduate Students Charles Henderson Paul Knutson Vince Kuo

Recent Graduates

Dr. Tom Foster (2000), Assistant Professor, SIUE Dr. Laura McCullough (2000), Assistant Professor, UW-Stout

Some Current Projects:

- Curriculum development at the introductory level: Problem Solving Focus (Cooperative Group Problem Solving, Problem Solving Laboratories, Problem Solving Framework w/ Context Rich Problems)
- Research into stability of curricular changes and faculty adoption of innovative curricula (Faculty Conceptions)
- Student-Centered Curriculum Development (CPU high school and college; CIPS - middle school)

Overview

- 1. Why study faculty conceptions?
- 2. Research Methods
 - The Interview Tool
 - Selecting Faculty for Interviews
 - Analyzing Interview Data
- 3. What can we do with the results?

What is the difficulty with these researchbased curricular materials? Why aren't they widely used?

- Our theory: The available curricular materials do not fit well with faculty conceptions (i.e. beliefs, values, knowledge, etc.) of teaching and learning
- If this is the case then we have two choices:
 - 1. Change the curricular materials (curricular materials built on faculty conceptions are more likely to be used and more likely to be used appropriately)
 - 2. Change the faculty conceptions We know from students:
 - Changing conceptions is hard.
 - In order to change conceptions it is first necessary to determine what the current conceptions are.

Goal of this Study

- Begin the process of building a model of faculty conceptions (beliefs and values) about the teaching and learning of problem solving in introductory calculus-based physics.
 - Can (how can) faculty conceptions be measured?
 - Can (how can) a model be constructed to describe these conceptions?
 - What are the important parts of this model?
 - How are these parts related?
- The focus of this study is on problem solving because the Physics Education Research Group at UMN is interested in problem solving.

The Interview Tool

To investigate faculty conceptions, we developed a $1\frac{1}{2}$ - 2 hour interview based on instructional "artifacts":

- 1st) 3 Instructor solutions: varied in the details of their explanation, physics approach, and presentation structure
- 2nd) 5 Student solutions: based on actual final examination solutions at the University of Minnesota to represent features of student practice
- **3rd) 4 Problem types:** represent a range of the types of problems used in introductory physics courses

All artifacts were based on one problem -- instructors were given the problem and asked to solve it on their own before the interview.

Example - Part 1, Instructor solution

Q1: In what situations [during lecture, after test...] are students provided with examples of solved problems in your class. How does this work?Q2: How would you like your students to use the solved examples you give them in these different situations? Why?

Abstract/General

Q3: Scan through each of these instructor solutions. Please describe how these solutions are similar or different to your solutions. Please explain your reasons for writing solutions the way you do.

Concrete/Specific Artifacts

Q4: Looking at the instructor solutions, what aspects/components that you consider important in problem solving are represented in these instructor solutions, and what aspects are not represented?

Conceptions of Problem Solving

Selecting Faculty for Interviews

Physics faculty in Minnesota (~107 meet selection criteria):

- taught introductory calculus-based physics course in the last 5 years
- could be visited and interviewed in a single day

Sample Randomly Selected:

30 faculty members

(From 35 contacted, 5 declined to be interviewed)

Roughly evenly divided among:

- 1) Community College (CC) N = 7
- 2) Private College (PC) N = 9
- 3) Research University (RU) N = 6
- 4) State University (SU) N=8

Interviews were videotaped and the audio portion transcribed:

~ 30 pages of text/interview

Data Analysis

Phase I: 1. Determine if the conceptions of 6 UMN faculty are coherent enough to allow a model to be developed.

2. If so, develop an initial model of faculty conceptions based on these 6 faculty.

(My Thesis!)

Phase II: Refine and expand the initial model based on remaining 24 faculty from different institutions. (Vince Kuo's Thesis)

Phase III: Determine the distribution of conceptions among faculty using a larger national sample.

Phase I: Final Product

Final product is a concept map that describes an initial, testable model of how faculty think about the teaching and learning of problem solving.

What Can We Do With this Model of Faculty Conceptions?

• Explore faculty conceptions about how students learn and how faculty can help students learn.

What do Faculty Talk About?

Summary of Management Activities									
	Setting Constraints	Making Suggestions	Providing Resources						
Working (Path A)	On problems that students work (6 of 6)								
	On situations in which students work problems (3 of 6)		Of appropriate problems (6 of 6)						
		That students work on problems (3 of 6)							
Using Feedback (Path B)	That students work on problems by collecting		Of grades on students solutions (6 of 6)						
	solutions: test (6 of 6), in-class work (2 of 6), HW (1 of 6)	That students work on problems (HW) (4 of 6)	Of appropriate example solutions (6 of 6)						
	By arranging class time for small group work (4 of 6)		Of peer coaching (4 of 6)						
		That students come to office hours (3 of 6)	Of instructor coaching (4 of 6)						
Looking/Listening (Path C)			Of solving problems on the board during lecture to convey information (6 of 6)						
			Of talking about problem solving techniques (4 of 6)						
			Of solving problems on the board during lecture to develop student interest (2 of 6)						

Conclusion (so far)

• Faculty seem to see their job as setting up situations in which students can learn (providing resources, not setting constraints)

- Students are expected to take responsibility for their own learning (similar to findings of Gallagher & Tobin, 1987)
- Implication → Faculty will likely be reluctant to use curricular materials/methods that place more emphasis on setting constraints
- Faculty did not talk much about what students need to do to learn
 - They appear to think that path B (student uses feedback while/after solving problems) is the most effective way to learn, but don't give many details.
 - Implication → Faculty may lack an explicit understanding about how students learn (similar to findings of Prosser & Trigwell, 1999)

The Resource of **Example Problem Solutions**

- All six instructors described their management related to this resource as:
 - Assigning test or homework problems for students to work on and then provide written solutions (path B – working and then using feedback)
 - Instructors think that students will learn by comparing these EPS to their test/HW solutions – but, they don't believe students do this
 - Instructors don't attempt to manage the situation further
 - Working example problems (that students have not previously seen) on the board during lecture (path C – looking)
 - Instructors don't talk much about what students do in this situation or how this leads to learning
 - Instructors don't attempt to manage the situation further

"Bare-Bones Solution"

The tension does no work

Conservation of energy between point A and B

 $Mv_A^2/2 = mgh$

 $V_A^2 = 2gh$

At point A, Newton's 2nd Law gives us:

7- w = mā

 $T - w = m v_A^2 / R$

 $T = 18_N + 2.18_N \cdot 23_m / .65_m = 1292N$

<u>Providing Resources</u> of Example Problem Solutions

- All 6 instructors:
 - Distinguish between:
 - less detailed solution (IS1)
 - more detailed solutions (IS2, IS3)
 - Favored using solutions more detailed than IS1
- •4 of the 6 instructors:
 - Said that their solutions were similar to IS1

Factors Affecting an Instructor's Choice of Example Problem Solutions									
	Less Detailed (IS1)	More Detailed (IS2, IS3)							
How will it affect student learning?	 Students who were not able to do the problem might not be able to understand the solution (1 of 6) 	 Makes it clear what is happening so students who had trouble can understand (6 of 6) Can confuse students by discussing complications that some will not think of (3 of 6) 							
Will students use it?	• Makes the solution seem easier so students might read it (2 of 6)	 Can scare off students by having too many steps (4 of 6) 							
How hard is it to create?	• Easy to write or find in solution manual (4 of 6)	 I'm not good at spelling things out in detail like that (1 of 6) 							

What Types of Details do Instructors Prefer?

5 of the 6 instructors favored IS3 (over IS2)

IS2 (Emphasis on Details)	IS3 (Emphasis on Reasoning)
•Clear Steps	•Plans before execution
 Starts from known quantity Jumps right in with calculations Systematic approach implies that there is a standard way to do problems 	 Evaluates answer Explains reasoning Starts from target quantity

Instructor Solution 3 Has Features of Expert Problem Solving										
	Features of Expert Problem Solving in InstructorInstructorsSolution 3:123456						6			
1.	Restates problem in physics terms									
2.	Starts from target (goal) quantity	\checkmark								
3.	Plans first then executes	\checkmark		\checkmark	\checkmark	?	?			
4 .	Evaluates answer			\checkmark			\checkmark			

All features of expertise noticed were described as desirable

Conclusions – Faculty Management

- Faculty do little to actively manage student use of problem solutions they simply provide the resource of example problem solutions.
- Faculty consider three factors when deciding what types of solutions to use:
 - How hard is it to create the solution? (Good predictor of use)
 - How will the solution affect student learning?
 - Will students use the solution?

Conclusions – Resource of Example Problem Solutions

- Faculty are dissatisfied with the solutions that they currently use.
- Implications: This is an opportunity for curriculum developers to influence the current practice by developing solutions that:
 - Make reasoning clear (especially by showing planning)
 - But are not
 - Too complicated → Confuse students
 - Too long \rightarrow Scare students

Conclusions – Features of Expertise

- Faculty value features of expertise that they recognize in problem solutions.
- Faculty do not appear to recognize all features of expertise in problem solutions.
 - Many notice planning before execution
 - Few notice restating the problem in physics terms
 - Some notice:

 starting from target quantity
 evaluating answer

• Implications: Faculty may be unable to model features of expert problem solving in their problem solutions. (Similar to research on expertise -- experts solve problems with little conscious thought and have trouble making their thinking explicit - see Dreyfus & Dreyfus, 1986.)

Summary

- It's important to find out about faculty conceptions because these conceptions strongly influence their instructional choices.
- Based on the initial model developed from a detailed analysis of 6 University of MN professors:
 - Faculty seem to see their job as setting up situations in which students *can* learn (providing resources, making suggestions) rather than setting constraints that require students to do certain things.
 - Faculty may lack an explicit understanding about how students learn.
 - Because they are expert problem solvers, faculty may not have an explicit understanding of the problem solving process. This makes it difficult for them to explain this process to students.

Summary - Continued

- Faculty consider three factors when deciding what types of solutions to use (these same three factors hold true for the other resources):
 - How hard is it to create the solution? (Good predictor of use)
 - How will the solution affect student learning?
 - Will students use the solution?

The End

For more information, visit our web site at:

http://www.physics.umn.edu/groups/physed/