Computer Problem-Solving Coaches

Leon Hsu, University of Minnesota Ken Heller, University of Minnesota

Theoretical framework

- Cognitive apprenticeship
 - Curricular efforts to improve students' problem-solving skills are all based (explicitly or implicitly) on this.
 - Components: Modeling, Coaching, Fading
 - Examples: craft apprentices, athletes, graduate students

Computers as coaches

- In an introductory physics class, the time available for students to practice solving problems in an environment where they can receive guidance and feedback is severely limited!
- Well-constructed computer programs can provide students with 24/7 coaching.

Functions of the computer

- Make explicit the expert's tacit knowledge, break down the expert's compiled knowledge
- Model expert-like problem-solving behavior, provide students with coaching, withdraw assistance as student learns

Making thinking visible

Minnesota problem solving framework

- 1. Focus the problem
 - Draw a picture incl. given information
 - Determine question to be answered
 - Determine approach to use
- 2. Describe the physics
 - Draw diagrams and define physical quantities
 - Determine target quantities
 - Write down quantitative relationships
- 3. Plan the solution
 - Select an equation containing the target quantity
 - Identify other unknowns in equation
 - Solve a sub-problem to find each unknown
 - Check units of result
- 4. Execute the plan
 - Calculate value of target quantity
- 5. Evaluate the answer
 - Check if answer is properly stated
 - Check if answer is unreasonable
 - Check if answer is complete

Draw a picture

- important objects
- · perspective

kinematics quantities

- · position
- velocity
- acceleration
- time.

dynamics quantities

- force
- · other parameters

Computer coaching

- Help students use expert-like framework to solve problems, providing individualized guidance and feedback
- Model and coach cognitive functions: deciding, implementing, assessing
- Vary assistance according to students' skill level

Instructional strategies

- Reciprocal teaching
 - Implementation mode:
 Computer decides, student implements, computer assesses
 - Coaching mode:
 Student decides, computer implements, student assesses
- Learning from well-studied examples
 - Performance mode:
 Student solves problem with minimal assistance

Implementation mode

Coaching mode

Performance mode

Assessing the coaches

- Prototype usability
 - Test coaches with a small number of student volunteers
- Educational efficacy
 - Small-scale pilot study
 - Quasi-experimental study for educational impact

Pilot Study

- Two groups of student volunteers
 - Groups matched according to previous exam scores
 - Group 1: Computer coaches
 - Group 2: No computer coaches
- Compare performance on subsequent exam
 - Problem-solving success
 - Use of expert-like framework
 - Assessment behaviors
- Interview students and examine log files for ideas on possible improvements

Acknowledgments

- U of M Physics Education Group
 - Ken Heller, Pat Heller, Leon Hsu, Tom Thaden-Koch, Jennifer Docktor
- U of M students
 - Marc Strom, Ross Noren, Chris Parker, Anne-Marie Guldberg
- U of M staff
 - Erik Hoover