Robust Assessment Instrument for Student Problem Solving

Jennifer L. Docktor

Kenneth Heller, Patricia Heller, Tom Thaden-Koch, Jun Li, Jay Dornfeld

Physics Education Research & Development Group http://groups.physics.umn.edu/physed

University of Minnesota

Grant No. 9981043

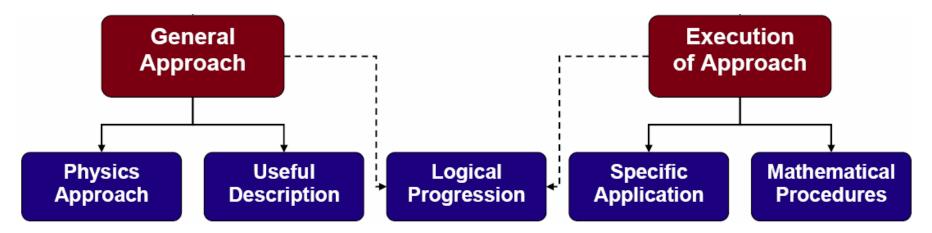
Project Description

<u>Goal</u>:

- Design a robust instrument to evaluate written solutions to physics problems, for use in physics education research and instruction.
- • The instrument should be *general* (not specific to instructor practices or technique)

- The instrument must satisfy criteria for:
 - validity the instrument measures what it claims to measure (face, content, construct, criterion-related)
 - reliability stability of scores over time and across different raters (intrarater and interrater)

7/30/2007


Solution characteristics

Inexperienced problem solvers:

- Little representation (jump quickly to equations)
- Haphazard formula-seeking and solution pattern matching

Experienced problem solvers:

- Low-detail overview of the problem before equations
 - qualitative analysis aids in selecting relevant physics principles
- Correctly apply physics to specific conditions in problem
- Some processes are automatic / implicit

Chi, M. T., Feltovich, P. J., & Glaser, R. (1980). Categorization and representation of physics problems by experts and novices. *Cognitive Science*, *5*, 121-152.

Larkin, J. H. (1979). Processing information for effective problem solving. *Engineering Education*, 70(3), 285-288.

• • • Rubric Scores (in general)

4	3	2	1	0
Complete & appropriate	Minor errors (one part missing or inappropriate)	More than one error	Fundamental misunder- standing	ls not expressed

NA(Problem)	NA(Solver)
Not necessary for this problem	Explicit statement not necessary for this solver

One Category: Logical Progression

4	3	2	1	0
The entire problem solution is focused and organized logically. The steps taken might not be linear, but guide the solver toward an answer.	The solution is focused and organized with minor inconsis- tencies and/or extraneous steps that don't guide the solution.	The solution is focused and organized with multiple inconsis- tencies and/or extraneous steps that don't guide the solution.	Parts of the solution are focused and organized. There are multiple inconsis- tencies and/or extraneous steps that don't guide the solution.	Nothing written can be interpreted as logical progression. The entire solution is unorganized and contains obvious logical breaks.

A batter in a baseball game hits the ball over the center field fence for a home run. The ball is struck 120 cm above the ground with an initial velocity of 40 m/s at an angle of 26° above the horizontal. A player on the other team makes a great effort to catch the ball, but it flies well above him. At a point just in front of the center field fence, 110 m from where the ball was hit, he leaps straight upward so that his glove reaches a point 3.0 m above the ground. How far above his glove does the ball pass?

Example Instructor Solution

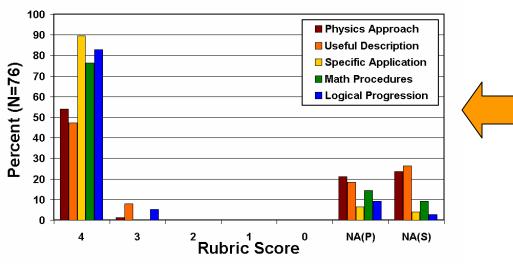
Physics Approach:	<u>NA(S)</u>
Useful Description:	4
Specific Application:	_4
Math Procedures:	_4
Logical Progression:	<u> </u>

V1
1
$$V_0$$

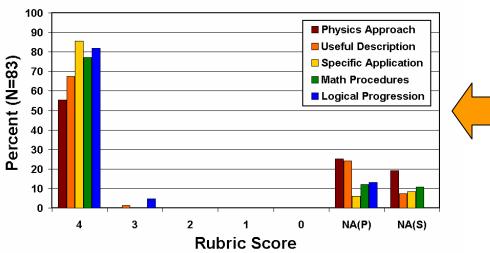
1 V_0
1 V_0
1 V_0
1 $V_0 = 26^{\circ}$
1 $V_0 = 26^{\circ}$
1 $V_0 = 10^{\circ}$
1 $V_0 = 0^{\circ}$
1 $V_0 = 0^{\circ$

run. The m/s at a

A batter in a baseball game hits the ball over the center field fence for a home run. The ball is struck 120 cm above the ground with an initial velocity of 40 m/s at an angle of 26° above the horizontal. A player on the other team makes a great effort to catch the ball, but it flies well above him. At a point just in front of the center field fence, 110 m from where the ball was hit, he leaps straight upward so that his glove reaches a point 3.0 m above the ground. How far above his glove does the ball pass?


Example Student Solution

Q: How for above his glove does the ball pass? hs V:= 40m/s h= 120cm aorm 0=26° h= 3m d= 110m d=110m $h_f = ?$ h3=? $\sqrt{2} - \sqrt{2} = 2 \alpha (x - x_0)$ \bigcirc h₃=h_f-h_a $V^{2} - (40m/s)^{2} = 2(4.8m/s^{2})(110m - 0m)$ $V^{2} = -3156 + (40m/s)^{2}$ V2-12=2a (y-y=) $\sqrt{V^2} = 556$ $V_f = 23.58 m IS$ (23,58m13)2-(40m13)=3(9.8)(9-12) V=V, +at 556m15-1600m15=19.6(y-1.20) 53.27= y-1.2m 23.58m/3=40m/3+(9.8)+ y=54.47=hc +=1.67sec This is not an hz=hr-hz $h_3 = 54.47m - 3m$ $h_3 = 51.47m$ logice its


Physics Approach:1Useful Description:3Specific Application:1Math Procedures:3Logical Progression:3

Instructors

Halliday, Resnick, Walker Instructor Solns (38 Chapters x 2 problems each)

Professor Solutions to Textbook Problems Calculus-Based Mechanics Homework

Halliday, Resnick, & Walker 5th Edition of Text (1997) Instructor Solution CD-ROM *Solutions sparse

Calc-Based Mechanics Professor

Solutions to Textbook Problems

Homework, Spring 2007

*Solutions more detailed

• • •

Data from Fall 2004

One class of 241 students

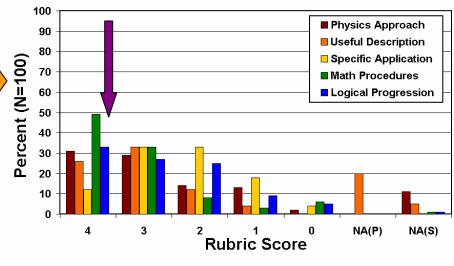
(788 total calc-based students)

60% freshmen, 25% sophomore,
7% junior, 4 % senior

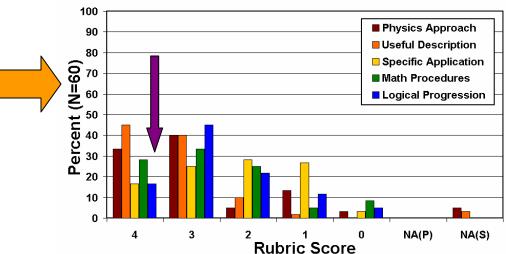
•70% science, math, engineering

Data from Fall 2004

One class of 167 students

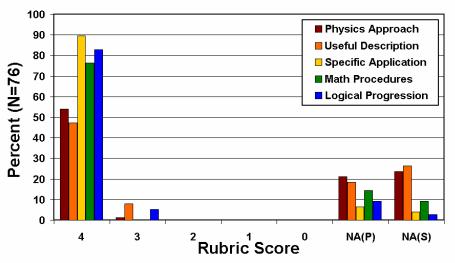

(258 total alg-based students)

15% freshmen, 50% soph,15% junior, 10% senior

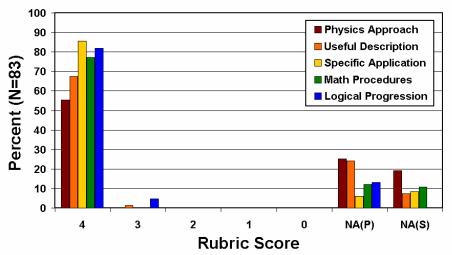

 62% pre-architecture, kinesiology, ag/animal science

Students

Calculus-Based Mechanics Final Exam 5 Problems x 20 Student Solutions

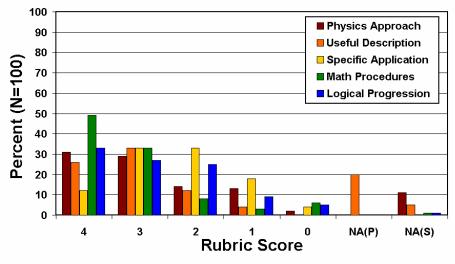


Algebra-Based Mechanics Final Exam 3 Problems x 20 Student Solutions

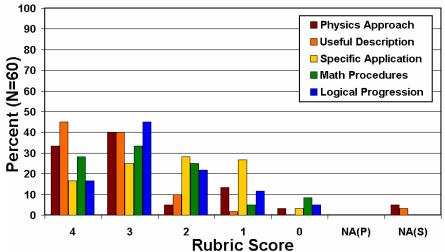


Instructors

Halliday, Resnick, Walker Instructor Solns (38 Chapters x 2 problems each)



Professor Solutions to Textbook Problems Calculus-Based Mechanics Homework



Students

Calculus-Based Mechanics Final Exam 5 Problems x 20 Student Solutions

Algebra-Based Mechanics Final Exam 3 Problems x 20 Student Solutions

Inter-rater Reliability

Independent scoring of student solutions by a PER graduate student and a high school physics teacher (N=160)

Category	% agree (exact)	% agree (within 1)	Cohen's kappa	<u>Kappa</u> : <0 No agreement
Physics Approach	71.3	97.1	0.62	0-0.19 Poor
Useful Description	75.0	99.2	0.63	0.20-0.39 Fair
Specific Application	61.3	96.9	0.48	0.40-0.59 Moderate
Math Procedures	65.6	99.4	0.51	0.60-0.79
Logical Progression	63.1	96.9	0.49	Substantial 0.80-1
OVERALL	67.3	98.5	0.55	Almost

• • • A First Look

- The rubric discriminates between instructor and student solutions. (criterion-related validity)
- o The rubric does not depend on the amount of writing.
- Independent interrater reliability is good, and would improve with training.
- More work to be done!
 - Continue testing the rubric on student solutions: different topics, courses, exams (quizzes).
 - Review of the rubric categories and content by faculty and problem solving researchers. (face & content validity)
 - Interrater reliabilty testing with and without training.
 - Revisions to the rubric.

References

- Blue, J. M. (1997). Sex differences in physics learning and evaluations in an introductory course. Unpublished doctoral dissertation, University of Minnesota, Twin Cities.
- Chi, M. T., Feltovich, P. J., & Glaser, R. (1980). Categorization and representation of physics problems by experts and novices. *Cognitive Science*, *5*, 121-152.
- Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th ed.) New York, NY: RoutledgeFalmer.
- Foster, T. (2000). The development of students' problem-solving skills from instruction emphasizing qualitative problem-solving. Unpublished doctoral dissertation, University of Minnesota, Twin Cities.
- Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. *American Journal of Physics*, 60(7), 627-636.
- Larkin, J. H. (1979). Processing information for effective problem solving. *Engineering Education*, 70(3), 285-288.
- Reif, F., & Heller, J.I. (1982). Knowledge structure and problem solving in physics. *Educational Psychologist*, *17*(2), 102-127.